

DSI-EEG+fNIR Dry. Mobile. NIRS.

Revolutionizing **EEG** and fNIR

State-of-the-art **active** dry-electrode technology

Synchronized & Superimposed EEG and fNIR signals

Resistant to electrical, motion, and Mayer Wave artifacts

Wireless ambulatory research-grade EEG and fNIR

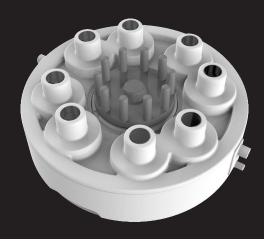
Positive user-experience for all

For localization & neurovascular coupling

High signal quality and data integrity

Recording in natural environments

Applications

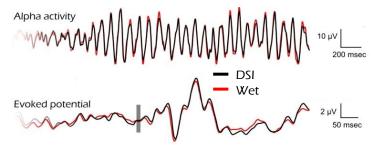

Neuroscience research **Brain-Computer Interfaces** Neurovascular Coupling Neurofeedback Neuromarketing **Biomarkers** and many more...

The DSI EEG + fNIR headset is a complete, research-grade, combined wireless EEG and fNIR system designed for synchronized recording of the brain's electrical activity and its haemodynamic response or blood-oxygen-level dependent (BOLD) response. The EEG and fNIR sensors are arranged to allow simultaenous and superimposed recordings at locations distributed on the scalp.

The system comprises ultra-high impedance active Dry Sensor Interface (DSI) sensors and very powerful LED emitters and high sensitivity NIR detectors that function through hair, withou skin preparation or gels. They are spring loaded to provide constant, comfortable contact pressure that mitigates movement artifacts seen during ambulation and are actively and passively shielded to prevent contamination from real-world electrical artifacts.

This multi-modal EEG and fNIR device enables investigation of neurovascular coupling, the relationship between EEG and BOLD, localization of neuronal activity sources and more reliable brain activity monitoring.

Uncompromising Signal Quality


- Active dry electrode sensor with 2 stage amplification and digitization in headset delivers research-grade EEG signal (>90% correlation with conventional wet electrode systems)
- Triple frequency ultra-bright LED emitters and amplified detectors offer reliable through-hair fNIR
- fNIR optodes arranged around EEG sensors for co-registered measurement of EEG and BOLD
- Patented artifact resistant electro-mechanical designs enable ambulation in naturalistic environments
- Short- and Long- light paths fNIR measurements empower integrated algorithms for regression of Mayer wave artifact

Practical EEG and fNIR

- Fully integrated and synchronized, complete EEG and fNIR system in a single device
- Ideal for combined hemodynamic and electrophysiological research
- Autodetection of optimal emitters and detectors to use for each fNIR location
- Raw fNIR signals converted to changes in concentration of oxygenated and deoygenated hemoglobin (BOLD)
- Rapid set-up and clean-up time
 Adjustable to fit a wide range of head sizes (52-62 cm

Powerful Options

- 8 channel locations with combined EEG and fNIR for concomittant measurement of EEG and fNIR
- Provides excellent temporal precision from EEG combined with spatial precision from fNIR.
- Wireless triggering for synchronization of multiple
- devices (hyper-scanning) and ambulatory ERPs
- Bluetooth or wired-USB transmission
 Adjustable power settings for each emitter LED wavelength

Technical Specifications

Sensor locations: International 10-20 system

Fp1, Fp2, C3, C4, T3, T4, O1,O2 and A1/A2 sensors for linked

ear reference

Reference: Pz Common-mode-follower

Ground: Fpz

Positional accuracy:: Within 1.5 cm

Resolution: 16 bit

Sampling rate: 300 Hz EEG, 15 Hz fNIR

Bandwidth: 0.003-150 Hz EEG, 40 nm fNIR

Gain: 60 CMRR: > 120 dB

Channel cross-talk: <-70 dB with sensors

Input impedance (1Hz): 47 GΩ
Input bias current: < 25 pA
DC offset tolerance: ± 200 mV
Maximum input range: 10mV p-p
Noise (1-50Hz): < 1 μV RMS

Digital inputs: 8 bits Wireless: Bluetooth Wireless range: 10 m

Run-time 4 h

fNIR emitters and detectors: 4 per sensor Emitter Frequencies: 760, 808, 850 nm

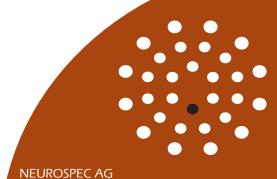
Intuitive Software Included

DSI-Streamer

Signal quality metrics

Montages

ERPs


File formats: EDF, CSV (filtered and raw)

Streaming via TCP/IP socket

- C-based API for Windows/Mac/Linux
- LSL streaming

Synchronized Interfaces

- Eye-tracking
- Motion capture
- NeuroGuide / BrainSurfer
- EEGLAB / ERPLAB / BCILAB
- Mensia Neuro RT / OpenVibe
- TEA Ergo CAPTIV
- BCI2000
- E-Prime
- Inquisit
- Presentation

Stansstaderstrasse 10, 6370 Stans, Switzerland +41 41 371 07 04 | www.neurospec.com